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Abstract

This proposal presents a visualization framework, based on a data model, that supports the
production of effective graphics for scientific visualization. Visual representations are effective
only if they augment comprehension of the increasing amounts of data being generated by
modern computer simulations. These representations are created by taking into account the
goals and capabilities of the scientist, the type of data to be displayed, and software and hardware
considerations. This framework is embodied in an assistant-based visualization system to guide
the scientist in the visualization process. This will improve the quality of the visualizations and
decrease the time the scientist is required to spend in generating the visualizations. I intend
to prove that such a framework will create a more productive environment for the analysis and
interpretation of large, complex data sets.
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1 Introduction

Computer simulations are producing increasingly larger data sets. To perform a thorough analysis
of these data sets simply by studying the numbers is difficult, if not impossible. As a result, the
technology to graphically display this data is essential. Scientific visualization is an enabling tech-
nology that assists the scientists with the analysis of the large data sets currently being produced.

A number of visualization systems exist to analyze simulation data sets [1, 21, 35, 39]. However,
each of these systems requires the scientist to build each visualization explicitly. The scientist is
required to know what types of representations are available and which representations fit which
types of data. Scientists typically do not have a background in visualization, so they often seek
assistance from a visualization expert to help them display their data. If such an expert is not
available, it is up to the scientist to generate his visual representations. Not only does this require
a great deal of time in learning to use the tools, but, because the scientist does not have a background
in visualization, he could generate a representation that leads to confusion or misinterpretation.
For these scientists, the complexity of current visualization systems has caused them to avoid using
the technology that could potentially be very valuable to them.

For example, a fluid dynamicist is interested in viewing a velocity vector field computed over the
wing of an airplane. The fluid dynamicist is required to 1) determine what visualization techniques
are useful in viewing velocity fields, 2) find the software that implements such techniques, 3) learn
to use the software so that she can create the visualization, and 4) correctly select from the many
options to enhance the image such as color, lighting, viewpoints, etc. If the fluid dynamicist is
interested in viewing a complex relationship in her data set, such as how the pressure of the fluid
flow affects the deformation of the wing, the risk of developing poor representations is increased as
is the amount of time spent using the software tools. This time could be better applied to analyzing
the data and understanding its behavior.

The rapid generation of visualizations is especially important due to the exploratory nature of
scientific domains, in which visualizations will be viewed briefly and then discarded. Scientists need
a tool to support the data analysis process. This tool must give them easy access to visualization
technology so they may concentrate on their scientific problem. Current visualization tools impede
this process by requiring the scientist to know how to apply visualization technology to their domain.

To maximize the benefit of the vast amount of scientific information produced by computers,
intelligent systems that can assist the scientist in performing productive visual data analysis would
be beneficial. A computer visualization assistant would provide guidance to scientists who do not
have visualization expertise nor access to a human visualization expert. Several benefits would arise
by providing this assistance to the scientist. Since the scientist is often unaware of the constraints
imposed by computer software, hardware and the human visual system, the resulting visualizations
will be better suited for the task at hand. The amount of time learning how to use visualization
software and generating visualizations will be reduced, allowing the scientist to concentrate his time
on studying the simulation results.

The development of an assistant-based system entails several components. Information about
the data, the user, and the available hardware and software is important in order to generate the
appropriate visualization. In addition, knowledge from graphic design, visual perception, and the
scientific domains provides essential information. The information from these sources can be used
to produce visualizations based on the goals and capabilities of the scientist, the type of data to be
displayed, and software and hardware resources.

The integration of this information forms a complex system. In order to abstract this complex-
ity, the development of models to describe each component of the visualization system is helpful.
Data modeling involves organizing the data into an appropriate form so that information can be



extracted easily. User modeling describes the goals and characteristics of the user so the system can
better adapt to her requirements and preferences. The machine model is necessary to determine
how each aspect of the computer, both software and hardware, impacts the resulting visualization
and interaction technique. Tying together the information in these models is the knowledge base,
containing facts and rules from graphical presentation, visual perception and expertise in the sci-
entific domains. The information in the knowledge base can be coupled with the data, user and
machine models, presenting the scientist with effective visualizations.

The development of a visualization system requires the integration of the components mentioned
above in order to provide the scientist with a comprehensive system for the production of effective
visual representations. This proposal presents work in building the base of this visualization system
to assist the scientist with the visualization process. An overview of the proposed research project is
presented in Section 2. Section 3 reviews past and current research that has impacted this proposal.
A more thorough description of the research proposal is presented in Section 4. This section also
includes a description of the specific application domain on which this model will be tested. Section
5 describes the contributions of this research and section 6 presents a timeline that describes how
this project will be implemented. Finally, in Section 7, conclusions as well as plans for additional
research are presented.

2 Research Proposal - An Overview

The goal of this project is to assist the scientist with the design of effective graphics for scientific
visualization. Effective graphics, in a general sense, describe useful visual representations that aid
the scientist with the interpretation of data. Mackinlay[22] uses the term “effective”, along with the
term “expressive”, more specifically in characterizing what exactly defines a useful visualization. In
his work, “effective” suggests how well a graphical technique exploits the capabilities of the output
medium and human visual system to ensure a correct and quick judgement of the data. The
complementary word “expressive” describes how well a graphical representation encodes the data
attributes, presenting all the relevant information (and only the relevant information) to the user.
The use of these terms have become somewhat standard, used by many as the criteria in designing
graphical presentations. These terms are used in this proposal for evaluating visual representations
of scientific data.

The goal of this project manifests itself in two ways. First, effective visualizations will be pro-
duced that will aid the scientist in interpretation by taking into account rules of graphic design,
perception and knowledge in the scientific domains. Second, visual data analysis will be more
productive for the scientist, because the scientist will no longer be required to understand visual-
ization techniques and visualization systems. Instead, they will be provided with a system that
incorporates this knowledge, allowing them to spend the maximum amount of time analyzing their
data with the minimum amount of effort.

In order to achieve this goal, an assistant-based system will act as a visualization expert in
guiding the scientist in the creation of visualizations. This system will be based on a framework
that consists of a data model, a user model, and a machine model. The integrating component of the
framework will be the knowledge base. The system uses information stored in the knowledge base,
together with the information in the individual models to suggest useful visualization techniques.

The data model represents the data contained in the scientific domain. The data for each
domain contains the geometry of the simulated object, the data variables that have been calculated
in the simulation, and the relationships between the data variables. This information is embodied
in an object-oriented model.



To complement the data model, the user model describes each scientist and her characteristics.
These characteristics include the interpretation aims of the scientist, the background of the scientist,
and any limitations the scientist may possess. The interpretation aims specify what information
the scientist is trying to extract from the data. This information can be detailed (i.e. locating
certain values of data points) or the information can be general (i.e. investigating local trends in
the data). Background information about the scientist might include information such as what
type of computer she uses or what type of user interface she prefers. The limitations of a scientist
are intended to describe physical constraints such as a color blindness.

The machine model incorporates information about the resources available in the scientist’s
computing environment. This includes information about the characteristics and limitations of the
software and hardware available for performing visual data analysis.

The knowledge base contains information that influences the mapping of data to visualizations.
The scientist is often unaware of the constraints imposed by the computer and the human visual
system. The information in the knowledge base, obtained from the fields of graphical presentation,
visual perception and from the individual domains, attempts to fill this void.

This framework defines the components that are critical in the visualization process. However,
each of the components in this framework is a research project in itself. Data models, user models
and knowledge base systems have been studied for many years in the database and artificial intel-
ligence fields and research is still ongoing in these areas. As a result, a simplified version of this
framework will be examined in order to thoroughly study the principal component of the frame-
work, the data model, and how the mapping of data to visualizations is performed using rules in
the knowledge base.

The data model was selected as the main and driving component of the visualization frame-
work. The characteristics of the data define what visualization technique should be applied to
the data. The information in the user and machine models is important in the selection of this
mapping. However, the user and machine models only support and refine the mappings from data
to representation. Their impact can be studied as a later research project in the development of
this visualization framework.

The data model will characterize data sets involved in a multidisciplinary (fluid dynamics and
structural dynamics) project currently in progress at the NASA Ames Research Center. The map-
pings from data to visualization will be based on simplified user and machine models. The user
model will characterize a computational scientist involved in the project, his preferences and work-
ing environment. The hardware model will describe the system that is in the scientist’s working
environment at NASA Ames. The knowledge base will contain information about visual presenta-
tion techniques, perceptual considerations and knowledge from the scientific domains.

The end product of this research project will be a prototype version of an assistant-based
visualization system. With this prototype system, the scientist will be able to select data objects
and express his interpretation aim to the system. The system will process this information and
suggest a set of visualizations to the scientist, completely rendered and annotated. The scientist
will be informed about the properties of the visualizations and why they were selected. The scientist
may override these selections at any time.

This prototype system will be implemented in Superglue[16], an object-oriented programming
environment based on the language Scheme. Superglue is under development at the NASA Ames
Research Center and supports a rich base of visualization primitives. As a result, the programming
of visualization techniques can be kept to a minimum by taking advantage of previously written
software.

In order to show that an assistant-based system of this type is advantageous in analyzing the
large data sets, scientists will be interviewed during the project phases and upon completion of the



project. Questions will be asked regarding the effectiveness of this type of approach in analyzing
data. Interaction with the user will occur throughout the development of the system. This will
provide valuable input to the direction of the project and will influence the design of the user
interface.

3 Related Work

This project presents the development of a data model as the foundation of an assistant-based
visualization system. The use of models is a successful method for the design and implementation of
complex systems. Model building allows for a disciplined approach to the design process by adhering
to principles of decomposition, abstraction and hierarchy[3]. The following sections describe the
use of data models and visualization models in previous research.

3.1 Data Models

Data models have been used successfully in database applications to organize large amounts of data.
Different modeling paradigms have evolved as the needs for data representation have changed. The
selection of one of these modeling paradigms is necessary to implement the data model for this
project. It is important to select the appropriate paradigm, since this defines the structure for
the data representation. The following paragraphs describe the different paradigms used for data
modeling: the hierarchical model, the network model, the relational model, the semantic model
and the object-oriented model.

The hierarchical data model is the oldest type of data model. It is based on the concept that
data in the real world can be perceived and organized in a hierarchical manner. These relationships
are captured in hierarchical tree structures that are ordered from parent to child. Each node of
this tree is an entity, called a record type, that is composed of one or more attributes, called data
items, that describe the entity[19].

The network model was based on the 1971 report published by the CODASYL Data Base Task
Group[25]. The network model is composed of entities that are defined by record-type definitions.
These definitions consist of a name and the fields that describe the entity being specified. Rela-
tionships between entities are specified by set types, where a set is composed of an owner record
type and a member record type. This structure allows for a one-to-many mapping and complex
structures are formed when sets are allowed to intersect.

The relational model was popularized in the early 1970s, replacing the hierarchical and network
models as the premier data model in research and commercial applications. Structurally, the user
sees the relational database as a collection of tables called relations. The rows of a table are called
tuples and represent instances of a entity. The columns of the relation are the attributes of the
entity type. The domain is the set of all values that can appear in a given column. Relational data
models are operated on using the relational algebra. The relational algebra consists of operators
that perform tasks such as union, intersection, difference, select, project and join. Each of these
operators takes one or more operands and produces a new relation as a result[19].

During the time of interest in relational models, the semantic model[14] was developed due to the
lack of semantics in the hierarchical, network and relational models. The semantic model provides
a more natural way to specify the design of a database. The model allows for the representation
of objects of interest in a way that more closely resembles the view the user has of these objects
and relationships. These abstractions allow the designer to model an abstract object based on the
properties or attributes of the object. The capability to derive data is another appealing aspect of
the semantic model. This capability allows the designer to have access to data values that do not



necessarily need to be stored, but which can be computed as needed.

Object-oriented models rose to popularity from their predecessor, the semantic model. The
object-oriented model is superior to its predecessors in its ability to model both the structural and
behavioral components of data. As a result, object-oriented models represent entities the way they
are perceived in the the real world. Object-oriented models have support for general data types,
nested objects, and allow for compute-intensive applications.

Object-oriented models are superior to hierarchical, network, relational and semantic models
when dealing with scientific data because they offer support for the complexities inherent in scientific
data. Traditional models do not fit the needs of the multidimensional, heterogeneous, hierarchical
structures found in scientific data. Concepts such as a class hierarchy, inheritance, and methods
are not present in the hierarchical, network and relational data models. Semantic models lack
the methods that allow for the manipulation of the behavioral state of the model. Therefore, the
object-oriented modeling paradigm is the most appropriate model for managing the complexity of
scientific data.

The main concepts of the object-oriented paradigm include abstraction, encapsulation, and
inheritance[3]. Abstraction is an effective way to deal with complexity, since it breaks detailed
systems into simple conceptual objects with distinct boundaries. Abstraction is possible due the
similarities between objects and processes in the real world. It takes advantage of these similarities,
providing groupings so that the complexities are hidden and only the basic concepts are obvious to
the viewer.

FEncapsulation captures the essence of the object paradigm, providing a clear separation between
the external workings of objects and their internal implementation. Encapsulation and abstraction
are complimentary to each other. Abstraction focuses on the outside view of the object, while
encapsulation provides a mechanism for hiding the inside, detailed view, which does not need to
be seen by the user.

Although abstraction allows for the decomposition of complex systems, there is usually more
information than the user can handle. The need arises for some type of ordering mechanism to
control these abstractions so that the user may comprehend the overall system. Inheritance is one
mechanism that allows for this ordering. Inheritance defines relationships among objects. A class
of objects can inherit structure or behavior from another class of objects.

Object-oriented data models have the capability to represent and manipulate complex, nested
objects. These models also provide rich mechanisms for representing structurally complex inter-
relations among scientific data. Included in the benefits of the object-oriented paradigm are the
increased separation of conceptual and physical components, decreased semantic overloading of
relationship types, and the availability of convenient abstraction mechanisms.

3.1.1 Data Models in Visualization Systems

For the most part, visualization systems ignore the issue of data management and data represen-
tation. Typically, access is provided via a flat file structure and the format of the data is hidden
within the software. Data is not dealt with coherently and data formats often limit the size and
dimensionality of data sets and the knowledge about the data that can be represented.

Designers of several visualization systems have begun to acknowledge the need for data models
in the form of flexible data structures and standard data formats. However, most of these systems
place the emphasis on data-structure-driven models instead of knowledge- (or domain-) driven
models [37]. The result of this emphasis is the loss of the semantics contained in the data. This is
the main difference in the models presented below and the data model proposed in this project.

Many of the popular commercial systems use the data flow paradigm. The data in these types of



systems are stored as a stream of bytes, transferred between the modules that comprise a data-flow
“map”. Typically, a data set is read from a file using one module, passed as a stream of bytes to
another module where it is transformed into a user-selected visualization, and then passed to the
rendering module for display.

The Explorer package from Silicon Graphics employs the data-flow paradigm. Explorer has a
flexible data model (structure) that describes the complex data sets that currently exist. Although
this data structure is very accommodating, data still exist in large files. When the modules in the
Explorer map are executed, the large data sets simply flow through each module in the map.

IBM’s Data Explorer is also a data-flow system. This data model is similar to Explorer’s in the
sense that it is structure based rather than knowledge- (or domain-) based. Structures that can be
represented include data defined on a regular orthogonal grid, data on a deformed regular grid and
data on a variety of irregular grids such as triangular, quadrilateral and tetrahedral grids. These
underlying data structures are important, but the semantics of the data set are lost and cannot be
used.

Other examples of data models include formats currently used for storing and transferring data.
Again, these examples are more data formats based on flexible data structures than data models
that represent semantic knowledge about the data sets. NASA’s CDF (Common Data Format) was
one of first implementations of a data model[36]. It is based on the concept of providing abstract
support for the class of data that can be described by a multidimensional block structure. Unidata’s
netCDF is another model focused on issues of data transport[26]. HDF (Hierarchical Data Format),
from NCSA, concentrates on the need to move files of data among heterogeneous machines[24].

3.2 Visualization Models

Models and systems for the automatic generation of effective graphical presentations have recently
developed [4, 9, 10, 22, 28, 29, 30, 31, 32, 33, 41]. The applications vary in each of these research
projects, from the presentation of charts and graphs to the presentation of images. However, they
share a common goal of developing tools and techniques to make the data analysis process more
intuitive and productive. Researchers in this area have recognized the importance of the several
disciplines necessary for the creation of effective graphical presentations, namely computer graphics,
data management, graphic design, perceptual psychology and user interface design. All researchers
strive to define the components of the graphic design process, viewing current ad hoc methods as
unacceptable for future graphics and visualization systems.

Visualization is essentially a mapping process, taking data attributes and mapping them into
visualizations[7]. Data analysis systems are emerging that perform this mapping based on rules
of perception and graphical presentation. Feiner[10] calls these systems “graphically articulate”
in that they attempt to accurately convey the meaning of the representation to the user. These
systems can have varying levels of autonomy in the user interface, to suit the needs and capabilities
of the scientist. A computerized assistant can suggest appropriate representations based on the
characteristics of the data. A completely autonomous system can create representations and identify
sources of interest based on mathematical analysis, pattern matching and a large database of
information obtained from the user.

The issue of automated versus semi-automated systems is one of importance. Completely au-
tonomous systems are typically not successful due to the vast amount of knowledge and inference
capabilities they must contain. Semi-automated systems, therefore, are probably more likely for
visualization systems in the near future. Paradigms for semi-automated systems include assistant-
based, critic-based, improver-based and cooperative computer-aided design[10]. Assistant-based
systems offer suggestions to the user based on their specific goal and the information in the knowl-



edge base. Critic-based systems critique the visualization created by the user based on the infor-
mation in the knowledge base. Improver-based systems add or enhance the design created by the
user automatically. Finally, cooperative, computer-aided designs involve the expertise of both the
user and the computer, taking turns in developing representations in an iterative manner.

Some of the research performed in this area is presented below. The systems have developed
from conceptual ideas to simple graphics tools to visualization systems that help the user with the
design of graphical presentations.

Haber and McNabb [13] developed the concept of “visualization idioms”, a model to aid in the
generation of complex visualizations of large scale numeric simulations. The visualization model is
presented as a set of generalized mappings that transform raw data into geometrical abstractions.
The goal is to convert the raw data into a format that can be understood by the human visual
system while maintaining the integrity of the data. Three transformations occur in the process of
transforming raw data into a visualization. The first transformation involves enriching or enhancing
the data, in order to process it into a form fit for visualization. The next transformation involves
the visualization mapping, or the creation of an “abstract visualization object” (AVO) that maps
the simulation data into attribute fields. These attribute fields might include graphical qualities
such as geometry, time, color, transparency, luminosity, etc. The final transformation of the data
involves rendering. The resulting images, or “visualization idioms”, refer to the abstract meaning
of pictures as a visualization of scientific data sets.

Mackinlay[22] developed APT (A Presentation Tool) to automatically generate graphical pre-
sentations of relational information. The model is described by data, task and user directives. APT
contains a description of the information and task, defines evaluation criteria in formal terms, and is
able to compose multiple items and relations into one effective display. Mackinlay uses composition
rules to define appropriate combinations of simple graphics primitives in the generation of represen-
tations. To map from an internal representation to displayable images, evaluation criteria such as
importance (ranking of tasks), expressiveness (encoding of data attributes), and effectiveness (psy-
chophysical principles) are used. Although restricted to relational data and two-dimensional charts,
Mackinlay’s work is a foundation for complex visualization systems aiming towards automating the
design of graphical presentations. Problems and areas in which Mackinlay believes additional work
is necessary include an automated presentation tool for three-dimensional data as well as tools
for automating the extraction of features in the data, the interpretation of these features and the
discovery of new types of phenomena in the data.

Robertson [28, 29, 30] developed visualization guidelines by observing natural scenes and match-
ing data and task characteristics to two-dimensional and three-dimensional scene parameters.
Robertson’s approach is different from previous techniques in that he has a complete and coher-
ent scene in mind already before the mapping stage begins. By restricting the user to predefined
scenes, the natural scene paradigm guarantees perceptually valid mental models. De Ferrari [30]
expanded this original paradigm to include a more elaborate data model, user directives, and user
interpretation aims (the latter two combined under the term “visualization specification”) as input
to the visualization system. The goal of this model is the automatic generation of visualizations.

Wehrend and Lewis[41] describe each visualization process by two dimensions: a) the charac-
teristics of the information to be displayed and b) the specific perceptual task to be performed on
the resulting images. The finite number of data characteristics and the finite number of percep-
tual tasks define a two-dimensional matrix in which each element contains expressive and effective
examples of visualizations. If more than one tuple (data, task) is to be represented in the same
display, the user is responsible for setting priorities for the composition of representations.

The VISualization Tool Assistant (VISTA) [32] is a system, developed by Senay and Ignatius,
which generates visual representations automatically. VISTA emphasizes the mapping of data



attributes to primitive visualization techniques, which encode one dependent and up to four inde-
pendent variables. The synthesis of visualization techniques takes place in three steps. The first
step involves decomposing the data so that each element can be represented by a single visualiza-
tion primitive technique. The second step involves using rules of effectiveness and expressiveness
to find the proper visualization technique for each data compomnent. VISTA uses a depth-first
search until it finds a visualization technique that can express a given relation, provided that the
visualization technique has not already been used to visualize another relation. In the final step,
primitive techniques are combined to form a composite visualization by applying the appropriate
composition rules. The user is able to interactively modify certain attributes of the visualization
without causing inconsistencies in the final design.

4 A Framework for the Design of Effective Graphics for Scientific
Visualization

This section describes the framework of an assistant-based system for the visualization of complex
data sets, following the lead of the research mentioned in the previous section. Although the
entire framework is presented below for completeness, this project and this proposal emphasize the
data model as the central and driving component. The information in the knowledge base is also
important in that it provides the facts and rules that establish the visualization mappings.

In order to perform a proof of concept, a specific application, multidisciplinary fluids/structures
interaction, has been chosen to test the development of the visualization framework. The following

sections describe the environment and data involved in the multidisciplinary simulations performed
at the NASA Ames Research Center.

4.1 Multidisciplinary Visualization for Computational Aerosciences

Computational fluid dynamics (CFD), the study of fluid flow via numerical simulation, assists
scientists and engineers in developing a better understanding of fluid flow and how it affects the
flight characteristics of aircraft and aerospace vehicles. These simulations can involve large data
sets composed of multiple grids and multiple physical variables. For example, a recent simulation of
an F-18 aircraft[27] involved a grid composed of 1.6 million points, each with five physical variables
per instant in time.

The data involved in these simulations typically include one or more computational grids filling
a volume around the object, together with scalar and vector fields defined on these grids. Many
additional variable fields can be derived from the existing data using the laws of physics. These
variables describe the characteristics of the vehicle in the computer simulation. The structure of
these data sets and their interrelations are important to describe so that the maximum amount of
information may be obtained from the simulation results.

With increases in computing power, scientists have become interested in the study of integrated,
multidisciplinary simulations. These simulations can involve interactions between disciplines such
as fluid dynamics, structural dynamics, chemistry, combustion, and controls. Large, single discipline
CFD data sets are complex and difficult to manage. The combination of data sources from multiple
disciplines raises the importance of data management and representation. Methods and models to
organize data and represent relationships between data variables and data sets are as important to
visualization research as visualization techniques.

Multidisciplinary simulations require the use of both structured and unstructured grids. Struc-
tured grids are based on a rectangular connectivity that defines the nearest neighbor for each



element in the grid. However, the actual physical locations of the grid points can form curved and
warped surfaces in an attempt to closely model the surface of the geometry. Unstructured grids
do not possess this same rectangular connectivity. The grid cells in an unstructured grid can be
a variety of shapes (i.e. triangles, quadrilaterals, tetrahedra, prisms). The connectivity of these
elements is explicitly specified by a list which contains the grid points in the order in which they
are connected.

One of the multidisciplinary data sets that will be used to test this assistant-based visualization
system is the High Speed Civil Transport (HSCT). The geometry of the HSCT in the structures
domain is described by an unstructured grid. The grid consists of approximately 9,000 points and
the simulation involves thousands of timesteps. The structures simulation calculates the deforma-
tion (vector) and stress (scalar) values at each point in the grid. The variables that describe the
grid will include the physical-space coordinates (vertices) of the structure, the connectivity of these
vertices, and two physical variables: deformation and stress.

The information the structural dynamicist is trying to extract from the data is how the object
deforms and the resulting stress levels on the skin of the vehicle. Some of the visualization techniques
that are helpful to the scientist include color maps and contour lines to show the stress levels and
animation to show the deformation of the vehicle. Another visualization technique that is helpful to
the scientist is a plot that shows deformation over time. This information is useful in determining
when “flutter” begins and how it progresses. The ability to narrow the view to a region of interest
is of importance to the scientist, as are standard functions such as changing the point of view,
zooming, controlling the color range, and positioning and viewing cutting planes.

The multidisciplinary simulation will help fluid dynamicists to understand how the deforming
body of the HSCT affects flow characteristics. The fluids simulation will involve approximately
79,000 points that define the fluid volume around the HSCT. The fluids data set lies on multiple
grids that describe the volume about the HSCT. The physical variables include one vector field,
momentum, and two scalar fields, energy and density. Many additional variables can be calculated
from these variables, including the velocity and pressure of the flow.

Many visualization techniques exist for viewing fluid flow. Standard visualization techniques
such as the use of color, contours, and plots provide essential functionality. Visualization techniques
such as particle traces and stream surfaces are useful for visualizing the velocity field of the fluid[15].
Cutting planes are effective for viewing slices of data, such as the cross section of a wing. Vector field
topology[11] and volume rendering techniques[40] assist scientists with viewing the characteristics
of an entire flow field.

4.2 The Data Model

A rich and flexible data model is the central component of the visualization framework. The data

model serves to organize the information in the complex, heterogeneous data sets obtained from

multidisciplinary simulations. The object-oriented model represents the data in a manner similar

to how the user views the data and their relationships. As a result, the model is knowledge-based

rather than structure-based. That is, the model attempts to describe the knowledge content of the

data by defining it semantically rather than reducing it to a collection of numerical data structures.
The core concepts of the object-oriented data model include [19]:

e Object and object identifier: An object represents a real world entity. The object identifier
stores the name of an object and is system-wide unique.

o Attributes and Methods: The values of the attributes of an object constitute the state of the
object. The set of methods associated with an object define behavior, operating on the state

10



of the object.

o (lasses: Classes organize collections of objects with similar attributes and methods. Objects
are instances of a class and an object belongs to only one class.

e Class Hierarchy and Inheritance: A class may have any number of subclasses that inherit
properties from this superclass. The concept of class hierarchy and inheritance of attributes
and methods along the class hierarchy is what distinguishes object-oriented programming
from programming with abstract data types.

The object-oriented model possesses several qualities that make it appropriate for managing
scientific data. The capability to derive data by applying a method to a data object is an appealing
aspect of the object-oriented model. This allows the designer to express the information content of
the data without having to explicitly store all of its components. When the user queries a derived
data variable, the system computes the values. If the derived data is queried frequently, the system
may chose to permanently store the data.

The ability to extend the data model is also beneficial. The multidisciplinary model will un-
doubtedly grow as the technology becomes more defined and as additional disciplines are added
to the simulations. The object-oriented model is modular and components can be easily added
to expand the data model. For example, if acoustic data is integrated into the data model, an
object representing the acoustic data set would be added to the current class structure. Additional
methods and attributes could be defined to reflect the specific properties of the new discipline.

4.2.1 Data Model - Domain Knowledge

The following description of the object-oriented data model is based on the domain knowledge
of a multidisciplinary, fluids/structures simulation. This high level data model allows for the
semantic description of the data involved in this application. It is different from traditional data-
structures-based models in that it encodes the knowledge about the data. The data model has been
implemented in the Superglue programming environment; a description of the contents of the data
model is given below. Figure 1 shows a simplified pictorial representation of the data model.

Objects and Object Identifiers FEach multidisciplinary dataset is an object, representing the
full configuration of a simulated vehicle such as the HSCT. This object contains all of the informa-
tion about the initial conditions of the simulation, such as the flight speed of the aircraft (the Mach
number), the angle of attack and the given conditions of the airstream (i.e. temperature, density,
etc.). The multidisciplinary object also contains the discipline-dependent objects that represent
data from the different disciplines in the simulation.

The fluids and structures data are instance objects of the discipline-dependent class of objects.
As a result, both datasets have similar representations. Their differences are only apparent in
the lower layers of their composition hierarchy, where grid objects and data objects are encoded.
This differences arise because fluid dynamics data typically is based on structured grids and struc-
tural dynamics data is based on unstructured grids. In addition, the physical quantities that are
represented on these grids are different.

Both the fluids and structures objects contain a list of component objects that represent the
real entities that comprise the vehicle (i.e. wing, fuselage, tail). The definition of these components
is typically defined by the grids that comprise the vehicle. For example, in the fluids case, there are
typically several grids that define the volume about the vehicle. This is to ensure that the regions
of interest are densely sampled with points, so that critical information is captured. The sample
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points must be carefully placed since the number of points that can be used in the simulation is
limited by computing power. Points are densely positioned in the boundary layer, located near the
surface of the solid objects, where the flow complexity is of interest.

Fach of the component objects is further decomposed into timestep objects. Multidisciplinary
simulations are time-dependent in nature in order to evaluate the dynamic aspects of the vehicle.
Each timestep object consists of the current time in the simulation, a grid object and a data object.
The timestep granularity for each discipline is different, so the number of timestep objects may not
be equal in data objects for different disciplines.

The grid object has the information about the physical structure of the object. For the fluids
data set this information includes a structured grid that defines the volume about a section of the
vehicle. Additional information includes the locations of missing data points. This is a consequence
of the multigrid composition of the fluids volume, where overlapping points in the grids are ignored.
The grid object for the structures data set represents an unstructured grid. The information
contained in this object includes the physical-space locations and the connectivity of the points
comprising the grid.

The data object contains the data variables that are calculated at each of the points defined
in the grid object. For the fluids data set, this contains the values for momentum, density and
energy. The structures data set includes variables such as stress and deformation. Each of the
objects described in this hierarchy has its own unique name and identifier. This allows it to be
accessed independently and information about the object may be queried by the user.

Attributes and Methods Attributes define the state and characteristics of the objects. In
the case of this object-oriented model, the attributes define the characteristics of the data that
contribute to its mapping to a visual representation. Information such as the name of the data
variable, the dimensions of the data set, whether the data is a scalar or vector field, and how the
data variable is mathematically related to other data variables are some of the attributes that
describe the state of the object. For example, the fluids data set contains the variable momentum.
Momentum can be characterized as a three dimensional vector field of a given dimension which
represents the current state of the object. Attributes also describe the initial conditions of the
simulation such as the Mach number and the angle of attack of the vehicle.

Methods are functions that change the state of the object or create a new object. Methods are
simply small functions that can be written to incorporate more knowledge into the data model.
Methods can be applied to objects to create new objects, as in the case of derived data. The
computed variables stored in the data object have methods attached to them to derive a data
quantity. These methods are typically mathematical relationships. For example, variables such as
velocity and pressure can be derived mathematically from momentum and density.

Methods are used to access and perform queries on the data objects. For example, if the user
is interested in viewing the minimum and maximum data values of the pressure on the wing of the
HSCT, a method can be invoked to query this value. The user can also invoke a method to view
the composition of the data hierarchy.

Visualizations are created and rendered by invoking methods on the data objects in the hier-
archy. Methods typically have the quality of being polymorphic. That is, these methods can be
applied to a wide range of data types. For example, a method exists that draws contour lines. This
method can be applied to the density field that is defined on the wing of the fluids data set or it
can be applied to the stress field that is defined on the tail section of the structures data set. This
aspect of the object-oriented paradigm allows for modularity and code reuse.
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Classes Classes define a grouping of objects possessing similar characteristics. Classes are im-
portant in managing data for two reasons[19]. First, classes capture the semantics of the data sets,
organizing them by their natural components. This organization permits the data to be accessed
easily and efficiently. Second, classes provide the basis for querying the contents of the data model.
For example, if the user is interested in querying the contents of each momentum vector to see how
the minimum/maximum values change with respect to time, this can be done by simply searching
through all objects defined by the data object class that contain momentum. This is easier than
searching through all of the files containing the data sets for each timestep.

The objects defined previously are specific instances of classes, representing the actual entity
rather than the abstract notion of it. For example, the HSCT multidisciplinary data set was defined
as a specific instance of the multidisciplinary class. The fluids and structures objects were each
instances of discipline-dependent classes.

Class Hierarchy and Inheritance Class hierarchies represent the relationship between all of
the classes in the object-oriented model. The primary classes in this hierarchy include: the mul-
tidisciplinary class, the discipline-dependent class, the timestep class, the grid class, and the data
class. This hierarchy is also shown in Figure 1.

Inheritance is one of the most appealing aspects of the object-oriented paradigm. Inheritance
allows the attributes and methods to be passed down through the classes. Class hierarchy and inher-
itance allow for the hierarchical decomposition of the complexity involved in the multidisciplinary
data set. This is beneficial in that this information only has to be recorded once.

4.2.2 Data Model - Data Structures

The data model is structured around the application-specific components that exist in a multi-
disciplinary fluids/structures simulation. As a result, its form is not general because it contains
information specific to the represented domains. However, underlying data structures that com-
prise the data objects are general, storing the data in an efficient manner. These primitives are
provided in the Superglue programming environment to support the large data sets found in CFD
and multidisciplinary simulations.

Superglue contains primitives to efficiently manage large data sets[16]. Chunks are contiguous
blocks of untyped memory, memory-mapped directly to the program’s address space. Not only
does this avoid exhausting swap space, but it also avoids the initial delay in file reading. The
combination of efficient memory storage and the use of object classes and corresponding methods
is a powerful approach to handling large data sets.

4.3 The User Model

To complement the data model in this visualization framework, the creation of a user model serves
to describe the user and his characteristics. A user model is the knowledge source in a system that
contains explicit assumptions on all aspects of the user that may be relevant to the behavior of
the system. Although this aspect of the framework will not be directly studied in this project, a
brief description of its role in the framework is discussed. This is an area of interesting research for
future projects.

The information in the user model may include the interpretation aims of the user, the back-
ground of the user, and any limitations the user may possess. Interpretation aims (or “operations”,
as defined by Wehrend[41]) might include the following tasks: 1) identifying characteristics of the
data such as points on a wing where the velocity field is zero, 2) locating areas of interest in the data
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such as low pressure regions, or 3) correlating data variables to see how the pressure from a fluid
affects the structural integrity of a wing. Interpretation aims establish the goal of the user and the
information he is trying to extract from the data. User background might include information such
as the subjective meaning of certain color tables or shades as related to quantitative information,
or a preference for certain visualizations and interaction techniques. Limitations of the user may
include a color blindness, difficulties with psychomotor skills (i.e. working with a mouse), etc.

The user model can be represented using a stereotype hierarchy, as defined by Kass and
Finin[18]. A simplified pictorial description of this user model is shown in Figure 2. This model uses
stereotypes to describe a general class of users. Stereotypes define facts and rules that pertain to
the user group’s background, preferences and data analysis goals. Models are typically crafted for
each application domain, usually by the explicit coding of domain-related goals, plans or knowledge
that system users are expected to have. For this application, the hierarchy would be composed
of two main stereotypes, namely the fluid dynamicists and the structural dynamicists. Each class
of users has a specific academic background which has, in turn, led to the use of certain types of
physical models, software, computing environments, etc.

These facts and rules can be of two types, either “definite” or “default”. Definite facts and rules
always apply to the given class of users. For example, fluid dynamicists always use mathemati-
cal relationships such as the Navier-Stokes equations to describe the relationships between data
variables. Structural dynamicists use mathematical relationships that describe the deformation
and stress of a body when a force or pressure is applied. Definite facts cannot be overridden, but
information can be added to make them more precise.

Default facts and rules can be overridden as the stereotype hierarchy defines smaller classes
of users. For example, a default rule might be that all fluid dynamicists use structured grids for
their computations. However, this can be overridden if a certain group of fluid dynamicists uses
unstructured grids in their work. The stereotype hierarchy can be further decomposed into smaller
user classes and eventually to single users, who are represented as leaf nodes in this hierarchy.

The simplified user model for this project will incorporate the preferences and interpretation
aims of a single scientist. The preferences of this scientist will be incorporated into the design of the
visualization system. The interpretation aims of the scientist will change frequently as the scientist
investigates different aspects of his data. As a result, interpretation aims will be specified by the
scientist during a query to the visualization system. Three categories of interpretation aims have
been chosen for incorporation into the prototype system. These interpretation aims, or goals, were
obtained from Wehrend[41]: identify/locate, categorize/compare, and associate/correlate. The
first category, identify/locate, deals with data of a single data variable in which single values
are of interest (i.e. searching for the locations of where velocity values are equal to zero). The
second category, categorize/compare, deals with multiple values, or a range of values, of a single
data variable (i.e. locating low pressure regions by using contours that categorize the data). The
third category, associate/correlate, deals with relationships between multiple data variables (i.e.
correlating the data to see how pressure affects deformation). These three categories accommodate
three types of interpretation aims that are of interest to the scientist. These interpretation aims
may be redefined and/or expanded as the project evolves.

4.4 The Machine Model

The machine model is perhaps the most straightforward of the components comprising the visu-
alization framework. This model details the capabilities of the computing environment available
for scientific use, both in terms of software and hardware resources. The scientist should not be
expected to know what type of environment he has available to him. This information is important,
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however, impacting what type of visualization will be appropriate for a given configuration. Infor-
mation will be encoded into the machine model, specifying the type of system, monitor resolution,
graphics capabilities, color facilities, CPU, memory, available graphics libraries, etc. This model
will describe a wide spectrum of machines, from laser printers (for publication) to workstations to
virtual reality systems. The incorporation of the machine model makes the system very portable,
allowing the scientist to view his data in many different environments.

This project will incorporate a simplified machine model, describing the current hardware and
software used by the scientist. The hardware characteristics of this model reflect a Silicon Graphics
(SGI) workstation. The capabilities of the SGI hardware and software will be incorporated when
transforming the data into visualizations. The software characteristics reflect the capabilities of
the Superglue programming environment and the visualization techniques that it possesses.

4.5 The Knowledge Base

The knowledge base contains information that will assist in the production of effective visualiza-
tions. This information includes rules and facts from graphic design and visual perception and the
advice and knowledge of scientists in the different scientific domains. Rules and facts from graphic
design have been documented by such researchers as Bertin[2] and Tufte[38]. Perceptual rules
and guidelines are also readily available[5, 17]. Information has also been collected by researchers
specifically for scientific visualization, including Senay and Ignatius[31] and Wehrend and Lewis
[41]. Input from the scientific domains will be obtained by interviewing scientists with regard to
which visualizations are most effective for them in the interpretation of data.

An “evaluation matrix” [8] will serve as the mechanism that will integrate the information in the
knowledge base with that of the data, user, and machine models. The evaluation matrix will be three
dimensional, having axes that represent data model characteristics, user model characteristics, and
machine characteristics. Each location in the matrix will have one or more visualization techniques
that fit the characteristics of the three dimensions. The evaluation matrix will be filled based on the
rules of perception, graphic presentation and knowledge from the scientific domains. In order to fit
these rules with the characteristics in the three models, the expressiveness and effectiveness criteria
developed by Mackinlay[22] will be used. Expressiveness criteria determine how well a graphical
representation expresses the information stored in the data. Effectiveness criteria determine if the
graphical representation takes advantage of the output medium and the human visual system. If
more than one visualization exists, they will be prioritized according to this evaluation process.

For example, the axis describing the data characteristics will contain coordinates representing
the contents of a leaf node on the data model (i.e. “fluids data, wing object, timestep 1, 3 di-
mensional vector field, physical variable is velocity”). In order to represent relationships between
data variables, all combinations of data variables will also be encoded. The axis describing the
user will be similar, containing the characteristics of an individual user (i.e. “Fluid dynamicist,
NASA Ames Research Center, research in particle simulation, prefers point-and-click interface,
color blind”). Finally, the axis describing the machine model will contain details about the specific
hardware available (i.e. “Silicon Graphics 420/VGX, true color, 48 MB RAM”). The visualization
technique that would support these three factors would be that of a particle trace or flow ribbon.
This is derived from the following rule, attributed to Shirley and Neeman[34] and compiled by
Senay and Ignatius [31]: “Particle advection does not necessarily show twisting in a vector field. If
it is desirable to display twisting effects, one should use flow ribbons.” A pictorial description of
the evaluation matrix is shown in Figure 3.

The evaluation matrix for this project will be an N X 1 X 1 matrix, where N is the number of
data variables and data variable combinations obtained from the data model. Since only one user

15



and one machine will be used for this project, the dimensions of the two remaining axes will be
one. At first these mappings will be performed by hand and encoded into the evaluation matrix.
Future research would involve automating the generation of the evaluation matrix based on the
information in the models and the rules in the knowledge base.

4.6 The Prototype Visualization System

This prototype system will be implemented in Superglue[16], an object-oriented programming en-
vironment based on the language Scheme. Superglue is under development at the NASA Ames
Research Center and supports a rich base of visualization primitives. As a result, the programming
of visualization techniques can be kept to a minimum by taking advantage of previously written
software. The system will use the knowledge embodied in the data model and the knowledge base.
A simplified user and machine model will be incorporated into the creation of the mappings stored
in the evaluation matrix.

A prototype interface has been developed tolead the scientists through the visualization process.
These interface pictures are preliminary and they will be presented to the scientist and iterated upon
during the course of the project. The interface will ask the scientist to input what data set they
would like to analyze. Figure 4 shows this main interface with four data sets the scientist may select
from. The interface will then ask for input regarding what data items the scientist is interested
in. Figure 5 shows the template that the scientist will use to select data. The scientist must also
select the interpretation aim (or “goal” as specified in the interface) that he wishes to perform on
the selected data variables. The system will suggest and display the visual representations based
on this data query and the information modeled in the framework, specifically, the data model.
The results from the separate visualizations will be displayed separately or merged together if
the representations do not detract from each other. If the results are displayed separately, the
visualizations will share the same orientation. Figure 6 shows the resulting visualizations.

Interactivity and direct manipulation will be an important aspect of this prototype visualization
system. The system will allow the user to manipulate the resulting image. Multiple, coordinated
views give the scientist the ability to associate the data sets by coordinating the viewing perspective
in each window.

If the scientist is not satisfied with the selection made by the system, they have the option to
override and select their own visualization. This can be done by selecting the “User Select” button
and choosing which visualization technique they are interested in. This is shown in Figure 7. The
system will determine if the selected visualization can be applied to the selected data and present
the result to the scientist.

In order to illustrate how the scientist would interact with the data-model-based system, the
following brief scenario is presented. A structural dynamicist is interested in viewing how the forces
of the fluid flowing over the vehicle affect the structural integrity of the wing on the HSCT. In order
to view this relationship, he first selects the HSCT data set (Figure 4). He is then required to input
which object he is interested in viewing, the range of timesteps, the data variables that influence
the phenomenon, and his intepretation aim (Figure 5). He selects the wing object and the last
10 timesteps. The physical variables that he is interested in include the pressure of the fluids data
set and the deformation of the structures data set. His interpretation aim is to correlate the data
variables so that he may understand how one variable affects the other. The scientist is presented
with several visualizations depicting the query that he has made (Figure 6).

The first visualization shows the distribution of pressure over the wing using contours. This
visualization has a cross-bar cutting slices in the wing and showing a plot of the pressure distribution
at this slice. Plots are helpful to the scientists in performing a more quantitative analysis of the data.

16



They should be used often in conjunction with qualitative visualizations. The third representation
views the deformation in animated form, cycling through the timesteps. Animation is effective in
viewing how the deformation warps the object over time. Since all representations are coordinated,
each representation is cycling together with the deformation. The scientist is advised that if he
is interested in stopping and investigating a certain timestep, that he may select a timestep using
the slider bar provided in the window. The fourth representation also corresponds to the cross bar
in the first visualization (it is also presented in the animation) allowing the viewer to see the plot
of the deformation across the cross section of the wing. As mentioned previously, the viewpoints
of all representations are coordinated in the windows. The viewpoint can be changed in any of
the visualizations and this change will be reflected in the other representations. If the scientist is
interested in viewing visualizations disjointly, he has the option of “disconnecting” one or all of the
visualizations.

The data model is responsible for interacting with the knowledge base in generating effective
visualizations. However, the scientist should also be able to access the knowledge in the data
model in performing queries about the contents of the data set. The data model should be clearly
represented to the scientist so he may interact with it easily. This is accomplished using a graphical
interface that allows the scientist to investigate the data model and browse through its components.
The graphical representation of the data model presents information to the scientist about the
contents of the data. This information includes the basic attributes of the data such as the size and
dimensionality of the data sets. A sample interface that demonstrates how the scientist may query
the data model is presented in Figure 8. This picture of a prototype interface shows the scientist
querying the object-oriented model and viewing the components of an object in the data model.

One of the benefits of incorporating all of the semantic information about the data in the model
is that the system can automatically annotate the visualization(s) using the semantic information
stored in the data model. For example, if the scientist queries the pressure on the wing, the
resulting visualization might present a contour map with the information about the pressure values
labeled as shown in Figure 6. This could include information about the specified data object: initial
condition information, the range of pressure values, a labeled color table, etc. This information is
often ignored and this can lead to misinterpretation of the data[12].

The current version of the software that implements this framework consists of the base layer of
the data model. Work is in progress to integrate the data model with the visualization primitives
that are available in the Superglue programming environment. The user is currently able to view
the contents of the multidisciplinary data model and to query its contents. The only visualization
technique available is the representation of the grid geometries.

4.7 User Interaction and Response

The scientist will be a part of the entire design process of this system. This will allow for interaction
between the scientist and the designer regarding the development of the system. Participation by
the scientist in the design process will help to assure that the system fits the needs and interests of
the user.

Scientists will tested using the system during its development cycle and upon completion. The
goal of this interaction is to assess the effectiveness of this type of approach in the development of
visualization systems. User testing will involve the “Thinking Aloud” approach[20], which encour-
ages scientists to verbally express their thoughts while working with the system. This is effective
in pointing out difficulties in using the system. This cognitive technique has been successful in the
past in determining problem areas in the evaluation of scientific software[23].

The user will also be surveyed and asked a series of questions concerning past experiences with
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visualization systems and questions about the current approach. Some of the issues that will be
addressed include ease-of-use, productivity, flexibility, and trust in the accuracy of the generated
visualizations.

Response from the user will be the only real way to know if the use of assistant-based systems
is a plausible approach. User input is critical throughout the design project to determine if such
an approach to visualization systems is a positive step.

5 Contributions of Proposed Work

The contribution of this work comes in two parts, a theoretical foundation and a user tested
implementation. In the design of the assistant-based system, the development of a structured
framework is required in order to define the necessary components that must comprise such a
system. The development of this framework provides a structure from which systems can be built
and expanded. This structured approach to visualization, as opposed to current ad hoc approaches,
is a step towards understanding the visualization process as a whole.

The development of an assistant-based visualization system will help create effective visualiza-
tions for the scientist. This leads to more accurate interpretation of the data since knowledge from
various domains such as graphic design and visual perception, goes into the development of the
representation. This knowledge is typically not possessed by the scientist who often relies on the
help of a visualization expert. By freeing the scientist from having to consult with this expert, the
visualization process can be made more productive. This approach is a significant contribution to
the design of visualization systems in that it makes visualization technology more accessible to the
typical scientist.

Although work has been done in encoding information about graphical representations, this
project will attempt to codify this information in such as way that it can be applied to visualization
systems. The research presented in this proposal builds off the foundation set by the previous
research projects mentioned in Section 3.2. It expands on this research by modeling the all of the
components that comprise the visualization process. As a result, the necessary information for
generating effective graphics is available. Differences between previous research and this project
are described below.

Haber and McNabb’s work does not implement data, user or machine models to formalize
the visualization process. However, they place an emphasis on the generation of the visualization
mappings that are essential in creating visualizations. Mackinlay’s APT was intended for graphical
presentations of relational information. Mackinlay’s designs were not oriented towards scientific
visualization, but rather the development of charts and graphs. Robertson and De Ferrari have
acknowledged the need for a formalization of the visualization process, but have not gone beyond
defining the need for data models and the user’s goal-related input. They currently do not have
an implemented system. Wehrend and Lewis’s work is a categorization of visualization techniques
based on the characteristics of the data and the perceptual task to performed on the data. They
did not attempt to encode this knowledge in the development of a visualization system. Senay and
Ignatius do not define the components specified in this proposed framework, specifically, the data
model. However, they examine how the user and the task at hand are involved in generating visual
representations[33] and have an extensive knowledge base of perceptual and graphic design rules.
Senay and Ignatius do have a system that is currently implemented, although the design time for
creating a visualization is prohibitive.

This project builds on the individual strengths of these research projects. In addition, this
project creates the necessary framework for implementing an assistant-based visualization system.
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Specifically, a great deal of attention will be paid to defining the data model and using the knowledge
contained in the data to generate visualizations. Because the knowledge will be encoded in the
evaluation matrix, the generation of visualizations will only require a table lookup. Therefore,
there will be almost no delay in suggesting the visualization in addition to the rendering time.

By incorporating a data model, this work will emphasize data management and representation
issues that have been missing from most visualization systems. The data model will incorporate
knowledge about the data as opposed to defining data structures which merely store the data. This
will allow the user to view the data in their own terms and not in the form of data structures defined
by computer scientists. It will also allow the system to develop effective visualizations based on
this knowledge. Current systems lack data models which contain the high level knowledge that can
assist the scientist with their data analysis. The object-oriented paradigm will be used as the basis
for the data model. The object-oriented paradigm allows for modularity, code reuse, expandability
and the capability to derive data usings methods.

This solution addresses the challenge of organizing and managing multiple, heterogeneous data
sets and their resulting visual representations. Since multidisciplinary simulations will be more
common as computing technology advances, this type of system will explore data management
issues. Data management has finally been recognized by the visualization community as an essential
component of any visualization system. This project attempts to address this issue by incorporating
object-oriented data modeling techniques.

A disadvantage of this type of system is that it will lack the flexibility that some scientists would
like. If this is the case, the user may always select her own visualization (as shown in Figure 7).

There will be many difficulties in the development of this project. The most formidable problem
will be in gathering and representing the vast amount of knowledge from the scientific domains into
a knowledge base that can be accessed and used effectively. Another problem will be creating the
interface with which the scientist can deal with his data in the most natural and intuitive way.
Many problems will undoubtedly be posed by the large, heterogeneous data sets.

6 Timeline

In order to map out how this project will evolve, a sequence of milestones is presented. This will
be useful in keeping the project on course and assessing progress. In addition, it attempts to define
when this project will be considered “done”. Figure 9 shows how the following work segments are
distributed over the course of the project.

A. FEncode the Data Model: Create the base structure of data model, incorporating all of the data
variables that are involved in the fluid/structure interaction scenario. Encode this information
so that it fits into the Superglue programming environment. This will ensure that the software
takes advantage of what Superglue has to offer and does not stray from the main goal of the
research. Encode information about the data attributes, constraints on the data, relationships
between data variables, including derived data types.

B. Unstructured Grids: Some programming will be required to incorporate visualization tech-
niques for unstructured grids so that structural dynamics data sets can be visualized. Mem-
bers of the Superglue development team will assist with this development to further the
capabilities of their environment.

C. Visualization Support: Ensure that the visualization system can provide support for all of the
visualization techniques that are incorporated in the system. Provide for facilities to label
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data, provide color tables, etc. so that information is well annotated and the scientist can
easily understand what their visualizations mean.

D. User/Machine Models: Set up a simple user and machine model that will contain information
about a single user and a single machine in the scientist’s environment.

E. Perception/Graphic Design Research: Gather information from visual perception and graphic
design from the various sources that have researched this issue.

F. Work with Scientist: Perform a study with a scientist as to which representations best repre-
sent his data. Spend time with the scientist learning about his/ working environment, habits,
and extracting knowledge that can be embodied for the generation of visualizations.

G. FEncode Knowledge: Based on the information gained from the scientist, the rules from graphic
design and perception, and the description of the data, encode appropriate visualization tech-
niques into the evaluation matrix using the evaluation criteria. Together with this encoding,
provide the rules and reasons behind the selection of visualization techniques. Provide for
the use of multiple visualization techniques for a single query and determine how they will
be prioritized.

H. User Interface: Develop a user interface that will provide easy access to the data and in the
specification of the goals. Provide for messaging window which states why selected visualiza-
tions were chosen.

1. User Survey: Survey the scientist to determine the effectiveness of this type of approach.

J. Write Up Resulls: Perform final analysis and write up results in final draft of the dissertation.

7 Conclusions and Future Research

In order to effectively analyze the vast amounts of data being generated today by complex computer
simulations, scientists require the help of some type of intelligent assistance. Current visualization
systems are often overpowering and do not provide the scientist with much guidance as to how
to proceed with their data analysis. Without this assistance, the scientist is required to learn the
complexities of generating visualizations and understand how to use visualization software packages.
This knowledge base is broad, requiring expertise in visualization, graphical presentation, visual
perception and knowledge of the application domains.

The principal contribution of this work is the development of an assistant-based visualization
system, based on a structured framework, for the design of effective graphics. The components of
this framework include: a data model, a user model, a machine model, and a knowledge base. Each
of these components defines its domain and contributes to the development of useful visualizations.
The emphasis of this project will be the development of the data model, the central component of
this framework.

This approach to visualization is intended to reduce the current level of complexity in visualiza-
tion systems, transforming them from “systems the scientist must serve into productive tools that
serve the scientist”[6]. The end result will lead to increased productivity for scientists so that they
can more efficiently analyze the large data sets that are produced by modern simulation technology.

Future research plans include incorporating full user and machine models that take into account
the task at hand as well as the varying types of input and output devices available to scientists.
This effort will complete the characterization of the visualization environment and demonstrate the
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impact that each of these components has in the development of visualization systems. Automating
the application of the knowledge base rules to the individual models would be another major
contribution. Currently the rules are applied by hand. If this process could be automated, the
time required to generate the evaluation matrix would be substantially reduced. Finally, due to
the large size of the data sets that will be encountered, database-oriented issues will need to be
addressed. A distributed, persistent object database derived from the original data model would
be valuable for managing large multidisciplinary data sets.
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Figure 1: Fluids/Structures Data Model
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